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ABSTRACT: Many tornadoes are unreported because of lack of observers or are underrated in intensity, width, or track
length because of lack of damage indicators. These reporting biases substantially degrade estimates of tornado frequency
and thereby undermine important endeavors such as studies of climate impacts on tornadoes and cost–benefit analyses of
tornado damage mitigation. Building on previous studies, we use a Bayesian hierarchical modeling framework to estimate
and correct for tornado reporting biases over the central United States during 1975–2018. The reporting biases are treated
as a univariate function of population density. We assess how these biases vary with tornado intensity, width, and track
length and over the analysis period. We find that the frequencies of tornadoes of all kinds, but especially stronger or wider
tornadoes, have been substantially underestimated. Most strikingly, the Bayesian model estimates that there have
been approximately 3 times as many tornadoes capable of (E)F21 damage as have been recorded as (E)F21 [(E)F indi-
cates a rating on the (enhanced) Fujita scale]. The model estimates that total tornado frequency changed little over the
analysis period. Statistically significant trends in frequency are found for tornadoes within certain ranges of intensity, path-
length, and width, but it is unclear what proportion of these trends arise from changes in damage survey practices. Simple
analyses of the tornado database corroborate many of the inferences from the Bayesian model.

SIGNIFICANCE STATEMENT: Prior studies have shown that the probabilities of a tornado being reported and of
its intensity, track length, and width being accurately estimated are strongly correlated with the local population density.
We have developed a sophisticated statistical model that accounts for these population-dependent tornado reporting
biases to improve estimates of tornado frequency in the central United States. The bias-corrected tornado frequency esti-
mates differ markedly from the official tornado climatology and have important implications for tornado risk assessment,
damage mitigation, and studies of climate change impacts on tornado activity.
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1. Introduction

Some tornadoes go unreported, typically because they occur
in a sparsely populated region and therefore escape notice.
This underreporting bias introduces sharp spatial gradients in
reported tornado counts near cities (e.g., Elsner et al. 2013),
and the observed decrease in this bias with time produces a
spurious upward trend in tornado frequency that may mask
true shifts in tornado activity (e.g., Brooks et al. 2003). The
decrease in the tornado underreporting bias results from sev-
eral factors, including population increases, the installation of
the Weather Surveillance Radar-1988 Doppler (WSR-88D)
network during the early 1990s, more frequent storm surveys
by the National Weather Service (NWS), and increasing num-
bers of storm spotters and chasers (e.g., McCarthy and Schaefer
2004). Strong tornadoes are more likely than weak tornadoes to
be reported, but their intensity is systematically underrated
in rural areas, where the maximum winds in a tornado are
less likely to be “sampled” by available damage indicators
(e.g., Doswell and Burgess 1988; Doswell et al. 2009; Wurman
et al. 2021). Tornado path width is also likely systematically

underrated in rural areas because of the lack of damage in-
dicators (Wurman et al. 2021), and it is reasonable to expect
that tornado pathlength suffers the same bias. The expan-
sion of the built landscape (Hall and Ashley 2008; Ashley
et al. 2014; Ashley and Strader 2016; Strader and Ashley
2015; Strader et al. 2017) is likely reducing both the under-
reporting and underrating biases with time. Estimating and
mitigating the effects of tornado reporting biases and their
trends is crucial for a range of endeavors including assessing
tornado risk (e.g., Schaefer et al. 1986; Coleman and Dixon
2014; Widen et al. 2013; Strader et al. 2016); developing
economic loss models and performing cost–benefit analyses
of tornado damage mitigation strategies (e.g., Simmons
et al. 2015; Grieser and Terenzi 2016; Romanic et al. 2016);
and investigating how tornado activity is modulated by cli-
mate (e.g., Lee 2012; Barrett and Gensini 2013; Brooks et al.
2014; Tippett et al. 2015; Allen et al. 2015; Guo et al. 2016;
Cook et al. 2017; Strader et al. 2017; Trapp and Hoogewind
2018; Childs et al. 2020; Nouri et al. 2021).

Bayesian inference provides a powerful framework for
estimating true tornado frequency in the face of the afore-
mentioned reporting biases and the large sampling errors
that arise from the brevity of the tornado record. BayesianCorresponding author: Corey K. Potvin, corey.potvin@noaa.gov
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tornado frequency models are hierarchical, meaning they
comprise a series of connected submodels (e.g., Wikle and
Anderson 2003). They normally include a reporting bias
model that is often a function of population density, a spa-
tial autocorrelation model that accounts for heterogeneity
in the true long-term tornado climatology, and a spatial
process model that accounts for the random clustering of
tornadoes in space and time. This random clustering occurs
even with a completely spatially random process, and is
amplified in tornado count data by, for example, tornado
outbreaks (e.g., Elsner and Widen 2014). The hierarchical
model may also incorporate one or more climate covariates
to further constrain the analysis (e.g., Wikle and Anderson
2003; Elsner and Widen 2014; Cheng et al. 2016; Nouri et al.
2021), as well as time-dependent terms that account for
trends and interannual variability in tornado occurrence (e.g.,
Elsner et al. 2016). The model is fit to reported county-level
or gridded tornado counts to produce probabilistic estimates
of reporting bias, true tornado frequency, and/or regression
coefficients describing the relationship between tornado fre-
quency and climate covariates.

Potvin et al. (2019, hereinafter P19) used a Bayesian model to
estimate the tornado reporting rate (TRR)}the proportion of
all occurring tornadoes that were reported}and thereby the
true tornado frequency over the central United States. The
Bayesian model was based on those presented inAnderson et al.
(2007) and Elsner et al. (2016) but included important modifica-
tions to mitigate a solution nonuniqueness (i.e., parameter con-
founding) problem that may have degraded estimates of TRR
and true tornado frequency in previous studies. The solution
nonuniqueness arises because a given reported tornado fre-
quency can be explained equally well by a high true frequency
and low TRR as by a low true frequency and high TRR. Statisti-
cal models for estimating the true tornado frequency should
therefore include constraints that properly “anchor” the analy-
sis. The P19 model addressed this problem by assuming that
TRR 5 1 (i.e., all tornadoes are reported) in grid cells where
population density exceeds a prescribed threshold. The model
estimated that only 45% of tornadoes over the central United
States were reported within the period 1975–2016.

The current study uses a statistically more rigorous version
of the P19 model to assess how TRR and true tornado fre-
quency vary with tornado damage rating, pathlength, path
width, and time over the period 1975–2018. This new analysis
allows us to assess how reporting bias differs between weak
and potentially destructive tornadoes, shorter- and longer-
track tornadoes, and narrower and wider tornadoes. Large,
statistically significant trends in frequency are found for cer-
tain ranges of tornado intensity, track length, and width, but it
is unclear how to distinguish between true changes in tornado
characteristics and secular trends arising from changes in tor-
nado damage assessment practices, including the switch to re-
porting maximum instead of average damage path width in
1995 and the implementation of the enhanced Fujita (EF;
Wind Science and Engineering Center 2006) scale in 2007
(e.g., Edwards at al. 2021). The stratified tornado frequency
estimates from our analysis provide a comprehensive view of
the true tornado frequency over the central United States.

2. Methods

a. Gridded tornado counts and population densities

We divide our 1800 km 3 1800 km central U.S. analysis do-
main (Fig. 1a) into 10-km grid cells as in P19. This analysis grid is
nearly identical to that in P19.1 As in P19, we exclude the north-
eastern 600 km3 600 km corner of the domain from the analysis
since many of the grid cells therein are located within the Great
Lakes. We compute the reported tornado count N within each
10-km grid cell using the recorded start points of the tornado
reports from the Storm Prediction Center Severe Weather
Database.2 Prior to doing so, however, we identify and remove
duplicate tornado reports by using the method of Elsner et al.
(2016). A separate N is computed for each of 10 tornado cate-
gories examined in this study (Table 1). The breakpoints
between categories were selected to maintain similar domain-total
N between corresponding categories of the three examined
tornado attributes. For example, the largest category for each
attribute}(E)F0 (rating), 0–1 mi (length; 1 mi ≈ 1.6 km), and
0–50 yd (width; 1 yd ≈ 0.9 m)}contains 15 356, 16016, and
17 072 tornadoes, respectively. Herein, (E)F indicates a rating
using either the enhanced or original Fujita scale.

We compute the population density (PD) within each 10-km
grid cell in our analysis domain by averaging over the PD of
the encompassed 1-km grid cells. The 1-km PD are obtained
from U.S. census data. The midpoint year of the analysis period
determines which of the three available U.S. censuses (1990,
2000, or 2010) is used to compute PD. For the full-period analy-
ses, valid 1 January 1975–31 December 2018, the midpoint year
is considered to be 1996 (the precise midpoint of 1975–2018 is
1996.5). For 5-yr analyses valid within the full analysis period,
the midpoint year ranges from 1977 to 2016. For midpoint years
prior to 1990 or following 2010, we compute PD from the 1990
or 2010 census, respectively. To compute PD for midpoint
years 1991–2009, we interpolate between the 1990 and 2000
censuses or between the 2000 and 2010 censuses.

b. Bayesian hierarchical model

Following previous studies (e.g., Anderson et al. 2007; Elsner
et al. 2016), we use a Bayesian hierarchical model to simulta-
neously estimate TRR and the expected actual tornado counts
k. The primary novelty of the Bayesian hierarchical models
used in this study and in P19 is the mitigation of parameter
confounding (solution nonuniqueness). The present model im-
proves upon the P19 model, principally by incorporating a so-
phisticated conditional autoregressive (CAR) model. We
implement the Bayesian model using the Python pymc3 proba-
bilistic programming framework (Salvatier et al. 2016).

To accommodate the known overdispersion of tornado oc-
currence data (e.g., Elsner and Widen 2014), reported tor-
nado counts Ni within each 10-km grid cell i are assumed to

1 The analysis grid origin is shifted 1.158 westward of that in P19
to include more of the Great Plains.

2 In principle, these data are identical to the National Centers
for Environmental Information Storm Data, especially for events
that occurred more than 1–2 years ago (P. Marsh 2020, personal
communication).
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follow a negative binomial distribution NegBin. The pymc3
module implements NegBin as a Poisson distribution whose
rate parameter, rather than being a constant, follows a gamma
distribution with prescribed mean m and shape parameter
a 5 adisp. Thus, we model the reported tornado counts as

Ni ∼ NegBin(m,a 5 adisp):

The expected reported tornado counts mi ≡ 〈N〉i are the product
of the (unknown) ki and TRRi:

mi 5 kiTRRi:

Therefore, we can express our reported tornado counts
model as

FIG. 1. (a) Log10PD over the analysis domain, with interstate highways in gray. Also shown are simple analyses of nor-
malized mean N vs log10PD, stratified by (b) damage rating, (c) damage pathlength, and (d) damage path width.

TABLE 1. Domainwide mean N per year (averaged over the 1975–2018 analysis period), and mean and credible interval of the
domainwide posterior TRR and k yr21.

Tornado category Description N yr21
Mean posterior TRR

(90% CI)
Mean posterior k yr21

(90% CI)

All All tornadoes 680 0.45 (0.42–0.48) 1544 (1440–1648)
(E)F0 Rated (E)F0 349 0.53 (0.47–0.57) 691 (626–756)
(E)F1 Rated (E)F1 220 0.39 (0.35–0.42) 562 (510–619)
(E)F21 Rated $ (E)F2 111 0.34 (0.25–0.42) 329 (248–428)
0–1 mi Damage pathlength # 1 mi 364 0.42 (0.38–0.46) 897 (809–996)
1–5 mi Damage pathlength . 1 mi and # 5 mi 178 0.45 (0.39–0.49) 403 (360–451)
5 mi1 Damage pathlength . 5 mi 137 0.56 (0.48–0.62) 245 (215–282)
0–50 yd Damage path width # 50 yd 388 0.47 (0.42–0.50) 859 (791–943)
50–200 yd Damage path width . 50 yd and # 200 yd 201 0.42 (0.37–0.46) 481 (424–532)
200 yd1 Damage path width . 200 yd 92 0.35 (0.25–0.45) 268 (194–356)
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Ni ∼ NegBin(mi 5 kiTRRi,a 5 adisp): (1)

We model TRR as an exponential function of a transformed
population density covariate P (e.g., Anderson et al. 2007;
Elsner et al. 2016). As in P19, we mitigate confounding be-
tween k and TRR by transforming PD such that TRR 5 1 for
P exceeding a threshold Pmax:

TRRi 5 TRRmin 1 (1 2 TRRmin) exp(2b1Pi) and (2)

Pi 5
0 if log10(PDi)$Pmax

Pmax 2 log10(PDi) if log10(PDi) , Pmax

:

{
(3)

Rather than prescribing Pmax as in P19, we include it as a param-
eter in the TRR model. This modification removes the need to
empirically tune Pmax, which we will show varies considerably
with tornado type (e.g., short vs long path; section 3b) and al-
lows the uncertainty in this parameter to be represented in the
posterior distributions of TRR and k. To prevent TRR from
approaching zero in very rural areas (which we judge to be un-
realistic), we also introduce the model parameter TRRmin,
which is the lower bound of TRR. This is another improvement
over the P19 model, which prescribed TRRmin on the basis of
trial and error; as with Pmax, TRRmin varies considerably with
tornado attributes (section 3b). The b1 parameter in Eq. (2)
controls the rate at which TRR decreases with P.

The expected actual tornado counts ki are modeled as

ki 5 exp(b0 1 vi), (4)

where b0 is the domain-mean k and vi captures spatially cor-
related random residuals, which is necessary to account for
the spatial heterogeneity in k. In maps of k shown later, a
Gaussian smoother has been applied to mitigate the influence
of tornado overdispersion (appendix A) and thereby better
reveal the underlying tornado climatology. No smoothing is
applied to nonspatial representations of k.

CAR models are often used to account for residual spatial
autocorrelations in natural data, which can otherwise lead to
biased and overconfident parameter posteriors. CAR models,
however, can induce confounding between predictor variables
and the spatial process (e.g., Reich et al. 2006), potentially
leading to biased, underconfident posteriors for fixed-effect
parameters. This is a substantial danger in the present applica-
tion, where we seek to minimize the aliasing between TRR
and k, since spatial correlations in N can arise from spatial au-
tocorrelations in both actual tornado counts and population
density. To model vi, therefore, we adopt the restricted spa-
tial regression (RSR; Hughes and Haran 2013) model, which
mitigates this parameter aliasing by enforcing orthogonality
between the spatial process and potentially confounding cova-
riates. The RSR is a restricted version of the intrinsic CAR
(ICAR; Rue and Held 2005) model in that it attempts to esti-
mate only spatial structure that is not present in predictive co-
variates, and on sufficiently large scales to be meaningful, as
judged by the analyst. This dimensional reduction further
motivates the RSR approach by making it much more

computationally efficient than traditional CAR models, which
can be prohibitively expensive on large analysis grids like the
one used herein (32 400 grid cells). Our RSRmodel implemen-
tation is described in appendix B. Our use of an RSR model is
a statistically rigorous alternative to the P19 strategy of divid-
ing the analysis domain into subregions within which k is held
uniform.

The priors for each model parameter are (see appendix B
for RSR model priors)

adisp ∼ HalfNormal(10 000); b0 ∼ Normal(0, 10 000);
b1 ∼ LogNormal(0:5, 4); Pmax ∼ Normal(6:5, 0:25); and
TRRmin ∼ Uniform(0, 1)

where Normal denotes the normal distribution with specified
m and variance s2, HalfNormal denotes the half-normal distri-
bution with specified s2, LogNormal denotes the lognormal
distribution with specified m and s2, and Uniform denotes the
continuous uniform distribution with specified lower and up-
per limits. While most of the priors are noninformative, we
achieved more reliable Markov chain Monte Carlo (MCMC)
sampling convergence using the narrow Pmax prior given
above. In all of our experiments, we generate four chains of
1000 MCMC samples using the no-U-turn sampler (Hoffman
and Gelman 2014) and discard the first 500 samples of each
chain. Parameter convergence is confirmed through direct
inspection of the MCMC traces and posterior distributions.
Parameter uncertainty estimates shown in the paper are the
90% Bayesian credible intervals (CI) computed from the
MCMC traces.

c. Estimating temporal variability

Following Elsner et al. (2016), we tested several expansions
of our Bayesian model to account for temporal variability in
TRR and k over the full analysis period. To capture temporal
trends in TRR and their interactions with population density,
we expanded the TRRmodel as follows:

TRRi,j 5 {TRRmin 1 (1 2 TRRmin)
3 [2b1Pi,j 1 b3Pi,j(y 2 y0)] exp[b2(y 2 y0)]}, (5)

where j is the year index, b2 ∼ Normal(0, 10000); b3 ∼ Normal
(0, 10000); and y0 5 1996. To account for interannual variability
in domainwide tornado frequency, we expanded the k model as
follows:

ki,j 5 exp(b0 1 vi 1 yj), (6)

where yj ∼ Normal(0, 1/tj), and tj ∼ LogNormal(0, 4).
As discussed in section 4b, we ultimately found this time-

dependent model to be inadequate for estimating the evolution
of TRR and k. Given the limitations of the time-dependent
model, we adopted an alternative approach to estimating tem-
poral variability in TRR and k: running the time-independent
model (with one modification, described in section 4a) for each
5-yr subinterval of the full (1975–2018) analysis period. We use
the Hamed and Rao (1998) modification of the nonparametric
Mann–Kendall test (provided by the pyMannKendall package;
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Hussain and Mamhud 2019) to assess the statistical signifi-
cance of the linear trend in the point estimates of each parameter.
This modified test accounts for the serial autocorrelation in the
point estimates arising from their overlapping time inter-
vals. We use the Theil–Sen method to produce point esti-
mates of the slopes of the linear trends. The Theil–Sen
method is nonparametric, it is insensitive to influential out-
liers, and its point estimates are insensitive to autocorrelation.
As will be shown in section 4, statistically significant (defined
herein as p , 0.05) trends exist in k for many of the examined
tornado categories. Attributing these trends, however, is com-
plicated by changes in damage assessment practices during the
analysis period (e.g., Agee and Childs 2014; Edwards et al.
2021).

d. Interpreting TRR estimates

When modeling occurrences of all tornadoes, TRR is simply
the fraction of tornadoes that are reported (as in P19). This
follows from our definition of 〈N〉i,j in Eq. (1) and our assump-
tion that TRR 5 1 for sufficiently large P [Eqs. (2) and (3)].
When modeling subsets of the tornado dataset based on tor-
nado attributes that themselves are subject to bias, the mean-
ing of TRR changes. To see why this is, consider that even if
all tornadoes capable of producing (E)F21 damage were re-
ported, we would still expect fewer (E)F21 tornado reports in
rural areas because of the sparsity of damage indicators.

Thus, when we filter the tornado dataset on attributes like
damage rating, pathlength, and path width, the relationship
between TRR and P is now governed by both the detection
rate of tornadoes actually satisfying the prescribed attribute
condition and the sensitivity of reports of those attributes to
P. If we adopt an interpretation of TRR that is strictly analo-
gous to that for the full tornado dataset, then the TRR for tor-
nadoes that actually satisfy the prescribed attribute condition
is the probability of such tornadoes being both reported and
correctly rated as meeting the prescribed criteria.

Even this improved interpretation of TRR, however, does
not account for two potentially substantial effects. The first effect
is the inflation of N and therefore of TRR caused by tornado
attributes being systematically underestimated. For example,
we know that (E)F0 tornado counts are inflated by systematic
underrating of tornadoes with (E)F11 winds. The second effect
is the potential inflation of TRR, and corresponding deflation of
k, for certain tornado categories arising from our assumption that
TRR 5 1 in sufficiently populous areas (i.e., where P $ Pmax).
This assumption does not account for the fact that damage indi-
cators, particularly the types required to justify significant and
violent damage ratings, are not uniformly densely distributed
even in the most urban areas. It is plausible that substantial attri-
bute reporting bias (especially for damage rating) exists even in
the most populated areas of the analysis domain. Given these
two effects, the model-predicted domainwide TRR for a given
tornado category estimates the ratio of the number of reports in
that category (i.e., N) to the number of tornadoes that would
have been assigned to that category were P $ Pmax throughout
the analysis domain.

This clarified definition of TRR has two important impli-
cations for how to interpret the Bayesian model estimates.
First, for tornado categories whose N may be underesti-
mated even where P $ Pmax [e.g., (E)F21 tornadoes], the
model-predicted k should be viewed as a lower-limit estimate
of the true k. Second, the full-period TRR estimates for torna-
does satisfying prescribed attribute criteria (e.g., width ex-
ceeding a threshold) should not be sensitive to changes in
damage assessment practices (e.g., the switch from reporting
mean path width to maximum path width) unless those
changes had different effects on reported tornado attributes
in areas with P$ Pmax versus P, Pmax.

3. Full-period results

a. Simple analysis

Before presenting our Bayesian model results, we will dem-
onstrate how much insight into tornado reporting bias can be
gained from simple analysis of the U.S. tornado database. We
first bin the N for each tornado category (section 2a) by
log10PD, where the range and spacing of the log10PD bins is
chosen such that each bin contains . 50 grid cells (to mitigate
sampling error). For each tornado category, we average the N
within each log10PD bin, then divide the domain-mean N for
each bin by the maximum domain-mean N (which for most
tornado categories corresponds to the highest bin). The resulting
normalized N (Figs. 1b–d) provide crude estimates of TRR,
under the assumption that TRR 5 1 for log10PD exceeding
the lower bound of the log10PD bin containing the maximum
domain-mean N.

This simple analysis reveals that (E)F1 and (E)F21 reports
are strongly concentrated in urban areas, whereas (E)F0 re-
ports are somewhat more evenly distributed between rural and
urban areas (Fig. 1b). This result is consistent with the expecta-
tion that while (E)F11 tornadoes are presumably more likely
to be reported than (E)F0 tornadoes, they are less represented
in the database due to the severity of the underrating bias in
rural areas, which decreases the number of (E)F11 reports
and increases the number of (E)F0 reports. Similarly, 0–50-yd
reports are more concentrated in rural areas (Fig. 1d), which
suggests tornado width is also substantially underestimated.
Conversely, 5-mi1 reports decrease much less sharply than
0–1-mi tornado reports with PD at high PD (Fig. 1c), which
suggests that tornado pathlength is less severely underesti-
mated than intensity and width.

Of course, this rudimentary analysis must not be inter-
preted too strictly. The simple procedure, for example, makes
no provision for the large spatial gradients in the true tornado
frequency across the central United States nor for the noise in
the tornado record owing to its brevity. Neither does this pro-
cedure provide uncertainty estimates. Hence, rigorous statisti-
cal methods are required to produce accurate point and
uncertainty estimates of TRR and k. The simple analysis
does, however, provide a plausibility check for the Bayesian
model results presented in section 3b.

Another simple and valuable way to analyze the tornado
report database is to compute mean tornado attributes as a
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function of PD (Fig. 2). In the absence of biases in reported
tornado attributes, and assuming that stronger, longer-track,
or wider tornadoes are progressively more likely to be ob-
served than weaker, shorter-track, or narrower tornadoes as
PD decreases (a detection bias), the mean reported attributes
would increase as PD decreases. The mean reported values of
all three attributes, however, sharply decrease as PD de-
creases from ∼10 to ∼0.1 km22 (Fig. 2), suggesting that the
effect of the progressively (as PD decreases) greater under-
estimation of tornado attributes exceeds the effect of the
progressively larger probability of detecting higher-end torna-
does. This result together with the larger sensitivity of tornado
frequency to PD for higher reported damage ratings and
path widths (Figs. 1b,d) indicate serious underestimation of
tornado attributes, especially intensity and width. Given
the severity of these attribute biases, careful interpretation
of model-predicted TRR is critical when analyzing cross-
sections of the tornado database (section 2d). At high PD,
the attribute and detection biases appear to approximately
balance each other for tornado damage rating (Fig. 2a) and,
to a lesser degree, path width (Fig. 2c). For pathlength, how-
ever, the detection bias seems to dominate the attribute bias

at high P (Fig. 2b), suggesting that tornado pathlength is better
estimated than tornado intensity and path width in populous
areas.

In addition to damage rating, pathlength, and path width,
we also examine how mean tornado report year varies with
population density (Fig. 2d). The mean tornado report year is
very close to the midpoint of the analysis period, 1996.5,
within the highest three PD bins, then sharply increases to
∼1998–2000 for the remaining PD bins. This result suggests that
TRR increased most substantially outside of high-population
areas during the analysis period, which is consistent with our
expectation that the full-period TRR is relatively close to unity
in densely populated regions of the domain.

b. Bayesian analysis

We now analyze the Bayesian model posteriors obtained
by training the model (section 2b) on the N for each tornado
category. Domain-mean posterior distributions of TRR for
each PD bin (Fig. 3) are consistent with the preliminary con-
clusions from our simple analysis of the tornado report da-
tabase (Fig. 1). The TRR for (E)F0 tornadoes is less

FIG. 2. Simple analysis of mean reported tornado attributes vs log10PD: (a) damage rating, (b) damage pathlength, (c)
damage path width, and (d) year.
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sensitive to population density than the TRR of (E)F1 and
(E)F21 tornadoes, which are chronically underrated, espe-
cially in rural areas (Fig. 3a). As a result, while (E)F0 tornadoes
have been undercounted by a factor of 1.9 (90% CI:1.8–2.1)
despite count inflation by underrating of stronger tornadoes,
(E)F21 tornadoes have been undercounted by a factor of
2.9 (90% CI: 2.4–4.0), with 6000–14 000 such tornadoes having
been rated (E)F0–1 or not reported over the 1975–2018 analy-
sis period (Table 1). Similarly, wider tornadoes are substantially
more undercounted than narrower tornadoes (Fig. 3c). Accord-
ing to the model, 200-yd1 tornadoes are 2.9 (90% CI: 2.2–4.0)
times as common as the tornado database suggests. The rela-
tionship between TRR and damage pathlength is opposite the
relationship between TRR and damage rating or path width:
TRR increases as damage pathlength increases (Fig. 3b),
confirming that pathlength is historically better estimated
than intensity and width.

The domain-mean k predicted by the Bayesian model
have a flatter intensity distribution than the reported tornado
climatology (Fig. 4a). This is a direct consequence of the
underrating bias and correspondingly more pronounced

undercounting of stronger tornadoes than of weaker torna-
does. Stratifying by damage path width likewise reveals a
flatter k distribution, though the difference from the reported
distribution is smaller given the weaker dependence of TRR
on width than on intensity (Fig. 4c). Unlike for the other two
tornado attributes, the model predicts a more skewed (not
flatter) track length distribution than the official climatology
(Fig. 4b), since longer-track tornadoes are less undercounted
than shorter-track tornadoes.

Since TRR varies substantially with PD, and the large-
scale PD varies substantially throughout the central U.S.
analysis domain, so also does the large-scale TRR (Fig. 5).
The geographic distribution of TRR obtained with our im-
proved model is very similar to that obtained with the more
ad hoc model of P19 (cf. our Fig. 5a with their Fig. 10). The
large differences in TRR-PD sensitivity between weaker and
stronger tornadoes and between shorter-track and longer-
track tornadoes is strikingly represented in these TRR maps
(cf. Figs. 5b,c and Figs. 5d,e, respectively). The expected ac-
tual tornado counts exhibit similar large-scale spatial patterns
as the reported tornado counts (Fig. 6), indicating that

FIG. 3. Mean posterior TRR vs log10PD for each tornado category: (a) ALL (black), (E)F0 (green), (E)F1 (orange),
and (E)F21 (blue); (b) ALL (black), 0–1 mi (green), 1–5 mi (orange), and 5 mi1 (blue); and (c) ALL (black), 0–50 yd
(green), 50–200 yd (orange), and 200 yd1 (blue). The 90% CIs are shaded. The domainwide TRR is listed next to
each tornado category in the legend.
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gradients in the latter are dominated by the underlying tor-
nado climatology rather than gradients in TRR. On smaller
scales, the model’s correction for the reporting biases is evi-
dent in the mitigation of local maxima over population centers
for ALL tornadoes (cf. Figs. 6a,b); the same is true for
(E)F21 and 5-mi1 tornadoes, but the effect cannot be seen
in these heavily smoothed plots (Figs. 6c–f). The differ-
ences in magnitude between the reported and expected ac-
tual tornado counts are much larger for (E)F21 tornadoes
(Figs. 6c,d) than for 5-mi1 tornadoes (Figs. 6e,f), consis-
tent with the much higher TRR of the latter.

The differences in mean posterior Pmax and TRRmin between
tornado categories appear plausible (Table 2), providing addi-
tional evidence that the model provides reasonably accurate
estimates of these parameters. For example, Pmax increases
with damage rating and path width, consistent with the expec-
tation that more urban areas (with denser damage indicators)
are required on average to minimize the probability of under-
rating stronger or wider tornadoes. Similarly, TRRmin decreases
with damage rating and path width, which presumably arises
from a severe underrating bias in very sparsely populated
areas. Conversely, Pmax decreases as damage pathlength increases,

consistent with our hypothesis that the underreporting bias for
shorter-track tornadoes exceeds the underrating bias for longer-
track tornadoes at high PD. This explanation is supported by our
other analyses (Figs. 1c, 2b, 3b) that indicate reported damage
pathlength is less sensitive than the other two damage attributes
to population density. The mean posterior Pmax for ALL, 2.00, is
consistent with our simple analysis of mean tornado report year
versus PD (Fig. 2d) but may be too low given the sharp decreases
in tornado counts as PD decreases from ∼3 to ∼2 (Figs. 1b–d).

For selected full-period analyses, the Bayesian model is eval-
uated using 10-fold cross validation, where each fold is a ran-
domly selected set of 300-km subregions of the analysis
domain (as in P19). For each fold, the nine other folds are used
to train the model, then posterior predictive samples are gener-
ated for the validation fold. The similarity of the actual N and
mean out-of-sample point estimates of N binned by population
density (Fig. 7) suggests the model is sufficiently flexible to cap-
ture most of the dependence of TRR on PD, and is not unduly
overfitting the noisy N. Substantial biases exist, however, in the
predicted N at the lowest and (especially) the highest PD. The
latter result is further evidence that the Pmax predicted by
the model are too low. A more complex TRR model might

FIG. 4. Normalized domainwide N (black) and mean posterior k (red) stratified by (a) damage rating, (b) damage
pathlength, and (c) damage path width.
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produce a better fit to N at very low and very high PD, but at
the risk of overfitting the data and at the computational ex-
pense of estimating a larger set of model parameters. It is also
not clear whether a more complex TRR model could be

constructed that places an upper bound of unity on TRR
(which is our mechanism for mitigating TRR–k confounding).
Concerns about the N predictions at extreme PD notwith-
standing, the success of the cross validation increases our

FIG. 5. Mean posterior TRR for (a) ALL, (b) (E)F0, (c) (E)F21, (d) 0–1 mi, and (e) 5 mi1.
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confidence in the TRR and k posteriors. Failing to account for this
TRR dependence and instead naïvely setting N at each 10-km
grid cell to the average N within the corresponding 300-km subre-
gion (i.e., assuming TRR 5 1 everywhere) greatly increases the

mismatch between the actual and estimated P-binned N (Fig. 7).
The substantial inferiority of these naïve estimates to the Bayes-
ian model predictions underscores the importance of accounting
for reporting bias to accurately reproducing the tornado record.

FIG. 6. (left) N and (right) mean posterior k for (a),(b) ALL; (c),(d) (E)F21; and (e),(f) 5 mi1. All fields have been
smoothed using a Gaussian kernel to mitigate effects of tornado overdispersion (appendix A).

J OURNAL OF AP P L I ED METEOROLOGY AND CL IMATOLOGY VOLUME 61918

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/18/22 03:19 PM UTC



4. Time series results

a. 5-yr analyses

In our initial 5-yr analyses, unrealistic temporal fluctuations
occurred in Pmax that were negatively correlated with fluctua-
tions in TRRmin (Fig. 8a), positively correlated with fluctua-
tions in TRR, and negatively correlated with fluctuations in
k (Fig. 8b). These patterns appear to be yet another instance
of parameter confounding. Noting that the Pmax in all of the
initial 5-yr analyses (i.e., for every tornado category) were ap-
proximately trendless (e.g., Fig. 8a), we repeated each 5-yr
analysis with its Pmax fixed to the corresponding mean poste-
rior Pmax from the full-period analysis (section 3b; Table 2).
Adding this model constraint mitigated the spurious parame-
ter fluctuations (Figs. 8c,d) while preserving the qualitative
trends in TRR, k, and TRRmin obtained with the original
model (cf. Figs. 8c,d; Figs. 8a,b).

Results of the 5-yr retrievals with the updated model for
various tornado categories are shown in Fig. 9. In all catego-
ries but for 200-yd1 (Fig. 9g), the mean posterior TRR exhib-
its a statistically significant upward trend over the 1975–2018
analysis period. For most categories, however, the TRR does
not substantially increase over approximately the last decade
of the analysis. For example, while the TRR for ALL approxi-
mately doubled over the period, it did not increase over the fi-
nal 10–15 years, during which nearly one-half of all tornadoes
were unreported (Fig. 9a).

No statistically significant trend is found in the 5-yr k for
ALL (Fig. 9a), suggesting that most or all of the upward trend
in N arose from the concurrent increase in TRR. The same is
true for (E)F0 tornadoes (Fig. 9b), which make up nearly
one-half of all tornadoes (Table 1), and for (E)F1 tornadoes
(not shown). For (E)F21 tornadoes, on the other hand, a sta-
tistically significant decreasing trend occurs in k (Fig. 9c). The
sharp decrease of (E)F21 k during the 1980s coincides with
decreasing (E)F0 and (E)F1 k, suggesting that the decreasing
(E)F21 k are not due primarily to increases in tornado inten-
sity underrating, or to decreases in tornado intensity overrating,
which was common prior to our analysis period (e.g., Schaefer
and Edwards 1999). The abrupt decline in (E)F21 k during
the 2010s coincides with a decrease in (E)F0 k but relatively
stationary (E)F1 k. The 0–1-mi k (Fig. 9d) exhibits a statisti-
cally significant downward trend, whereas the 5-mi1 k

(Fig. 9e) and 1–5-mi k (not shown) exhibit statistically signifi-
cant upward trends. A similar pattern occurs for the tornado
width categories: whereas 0–50-yd k significantly decreases
over the analysis period (Fig. 9f), the 200-yd1 (Fig. 9g) and
50–200-yd k (not shown) significantly increase. The pronounced
decreases in 0–1-mi k and 0–50-yd k contrast with the increases
(albeit statistically insignificant) in the correspondingN.

To assess how well the 5-yr retrievals collectively predict
the full-period N, we sum the observed N and means of the
posterior predictive distributions of N for the (1979–83,
1984–88, … , 2014–18) analyses and then bin them by PD
(Fig. 10). The observed and predicted N match reasonably
well, with the largest discrepancies again occurring at extreme
PD. The success of the 5-yr predictions in reproducing the
full-period observed N increases our confidence in the time-
dependent analyses presented in Fig. 9. Additional analysis
suggests that the use of 1990 population data in the early pe-
riod analyses (which produces temporal errors in PD of up to
13 years) does not unduly degrade the TRR and k estimates
(appendix C).

It has recently been shown that while trends in large-scale
U.S. tornado frequency are likely small over the last several
decades, regional trends are more substantial and correspond
in part to an eastward shift in tornado frequency (e.g., Gensini
and Brooks 2018). Given the large increases in TRR over the
analysis period, and the expected spatial differences in the
magnitudes of these changes due to spatial differences in pop-
ulation density, we compared the trends in the 5-yr N and 5-yr
k for ALL over our 1975–2018 analysis period to determine
whether the spatial shift in reported tornado frequency is sub-
stantially affected by reporting bias. To reduce noise in the
analyzed trends, and to be more consistent with Gensini and
Brooks (2018), we upscaled the 5-yr N and 5-yr k to a 100-km
grid collocated with our original (10 km) analysis grid. As in
our previous time series analyses, we computed the Theil–Sen
slope and used the Hamed and Rao (1998) modification of
the Mann–Kendall test to assess statistical significance.

The linear trends in 5-yr N and k are qualitatively similar to
each other throughout most of the analysis domain (Fig. 11),
adding credence to the previously identified spatial shift in tor-
nado frequency. However, while the trends in N are positive
through most of the domain, negative and positive trends in k
approximately balance each other. These results are consistent
with the rapid increase of domainwide N and the stationarity of
domainwide k over the analysis period, respectively (Fig. 9a).
The linear trends in k and N suggest that tornado frequency
has decreased faster over certain western portions of our do-
main than the tornado record indicates and that the general
eastward shift of tornado frequency is slightly more pro-
nounced than currently recognized.

b. Limitations of the time-dependent model

Using the ALL tornadoes dataset, we applied different
versions of the time-dependent Bayesian model described
in section 2c to the full analysis period to see if we could
improve upon our full-period or 5-yr analyses with the original
(time independent) model. Including the interannual variability

TABLE 2. Mean posterior Pmax and TRRmin for each tornado
category.

Tornado category Pmax TRRmin

All 2.00 0.26
(E)F0 2.01 0.36
(E)F1 2.03 0.18
(E)F21 2.29 0.13
0–1 mi 2.12 0.26
1–5 mi 1.79 0.23
5 mi1 1.62 0.30
0–50 yd 2.02 0.28
50–200 yd 1.93 0.23
200 yd1 2.70 0.17
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term y in the k model negligibly improved the model fit to the
data, with the coefficient of determination R2 of the mean
posterior N increasing by , 1% and the point estimates of
TRR and k changing by, 1%. Including only the population-

density–time interaction term (i.e., the b3 term) produced a
Pmax point estimate of nearly 4, which is implausibly high
(Table 2). Since the posterior Pmax was too high, the posterior
TRR were too low, with a domainwide TRR estimate of 0.21,

FIG. 7. Mean out-of-sample N (black), mean posterior N (solid red), and naively estimated N (transparent
red) binned by log10PD for (a) ALL, (b) (E)F0, (c) (E)F21, (d) 0–1 mi, and (e) 5 mi1. Large, medium, and
small dots represent gridpoint counts .500, 100–500, and ,100, respectively.
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less than one-half of that obtained in our full-period analysis
(0.45; Table 1). Fixing Pmax to 2.00 as in our 5-yr analyses pro-
duced a domainwide TRR estimate that was very similar to
those from our full-period Bayesian analyses (0.44 vs 0.45).
The estimated evolution of domainwide TRR (not shown),
however, poorly matched that obtained from our 5-yr analyses,
suggesting that the quasi-exponential model for the population-
density–time interaction is too simple.

Including the population-density-independent TRR evolution
(i.e., b2) term in addition to the b3 term produced a domainwide
TRR estimate of 0.44 and a Pmax point estimate of 2.01, both
very similar to those obtained in the full-period analysis.
However, the maximum TRR was much less than 1 early in
the analysis period (unlikely) and much greater than 1 late
in the period (impossible). It is unclear how to retain the
condition that TRR 5 1 for P . Pmax when the b2 term is in-
cluded in the TRR model (whether or not the b3 term is
also included). Moreover, examination of Eqs. (1), (5), and
(6) reveals that whether the b2 term is included in the TRR
model or the k model has no impact on the predicted N.
Thus, the Bayesian model cannot distinguish between ten-
dencies in TRR and k. Indeed, in an experiment with the b3

term included in the TRR model but the b2 term moved to
the k model, the TRR tendency was severely underesti-
mated, and the k was erroneously estimated to have nearly

doubled over the analysis period (whereas a small, statisti-
cally insignificant trend was found in our 5-yr analyses;
Fig. 9a).

In light of this new manifestation of the TRR–k confound-
ing problem, and the large errors that could arise from assum-
ing quasi-exponential evolution of domainwide TRR and/or
k, we conclude that applying the original model to series of
subintervals of the analysis domain produces more accurate
estimates of these parameter than applying any version of the
time-dependent model on the full analysis period. The origi-
nal model is also appropriate for the full-period analyses,
since the improvement obtained by including some or all of
the temporal terms is trivial (increase in R2 of the mean poste-
rior N, 1%) yet increases the computational cost by an order
of magnitude.

5. Discussion

According to both our simple analysis (section 3a; Fig. 1)
and our Bayesian model predictions (section 3b; Fig. 3;
Table 1), the population density threshold above which virtu-
ally all tornadoes are reported is approximately 100 people per
kilometer squared within the central United States. This result
sharply contrasts with the conclusion by Cheng et al. (2013,
2015) that this threshold is only about 6 or 7 people per

FIG. 8. Five-year mean posterior (a) Pmax (black) and TRRmin (red) and (b) TRR (blue) and k (red) for ALL
using the original TRR model. Also shown are 5-yr mean posterior (c) TRRmin and (d) TRR (blue) and k (red)
for ALL using constant Pmax.
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FIG. 9. Five-year N (black curve), mean posterior TRR (blue curve), and mean posterior k (red curve) for (a) ALL,
(b) (E)F0, (c) (E)F21, (d) 0–1 mi, (e) 5 mi1, (f) 0–50 yd, and (g) 200 yd1. The 90% CIs for TRR and k are shaded.
For each time series, the linear trend and its statistical significance are indicated.
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kilometer squared in Canada. Given that there is no obvi-
ous reason why the TRR would be much higher in Canada
than in the central United States, it is plausible that the
Bayesian models used in those studies suffered the param-
eter confounding that our model is designed to mitigate.

Statistical models that fail to resolve the TRR–k aliasing
are likely to produce large errors in both parameters.

One of the more striking predictions of our Bayesian model
is that particularly intense or wide tornadoes are severely
undercounted (Figs. 3a,c). These results, which are highly

FIG. 10. Mean N (black) and mean posterior N (red) binned by log10PD, accumulated over the 5-yr model
predictions, for (a) ALL, (b) (E)F0, (c) (E)F21, (d) 0–1 mi, and (e) 5 mi1. Large, medium, and small dots
represent gridpoint counts .500, 100–500, and ,100, respectively.
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plausible in light of our simple analysis of the tornado data-
base (Figs. 1b,d), point to chronic underestimation of tor-
nado intensity and width by damage rating and path width,
respectively. The existence of such a large bias in tornado
damage ratings is strongly supported by the tornado simula-
tion experiments of Dahl et al. (2017), who found that the
near-maximum winds in strong tornadoes are so spatiotem-
porally localized as to be highly unlikely to be sampled (by
anemometers or damage indicators) in rural areas. In fact, the
bias-corrected damage rating distribution obtained from the
Bayesian model, while shifted toward higher damage ratings
than the official tornado record, may still severely underesti-
mate the distribution of tornado-maximum winds, given that
the strongest winds in intense tornadoes may frequently fail
to intersect sufficiently resilient damage indicators even in
highly urbanized areas.

Strong observational evidence that the bias-corrected dam-
age rating distribution remains biased toward lower ratings is
provided by recently published wind-based rating distribu-
tions computed from Doppler on Wheels (DOW; Wurman
et al. 1997) velocity data for 82 supercell tornadoes (Wurman
et al. 2021). Although the DOW-based rating distributions
are likely positively skewed by selection bias, these ratings are
on average 1.5 categories higher than the NWS damage rat-
ings for the same set of tornadoes (Wurman et al. 2021), indi-
cating that the DOW-based rating distributions much better
represent true tornado damage potential than does the NWS
rating distribution. The fact that our model-predicted rating
distribution is much closer to the NWS distribution than to
the DOW distributions implies that our bias-correction proce-
dure fails to fully capture the tornado intensity underrating.
The corresponding underestimation of the frequency of stron-
ger tornadoes by our model validates our interpretation of
the model-predicted TRR (section 2d), which accommodates
the possibility that significant tornadoes are systematically

underrated even in the most densely populated regions of
the central United States. Wurman et al. (2021) also corrob-
orates our finding of a severe tornado width underestimation
bias; their DOW-measured tornado widths were systemati-
cally much wider than those assigned by the damage surveys.
Tornado damage mitigation strategies and cost–benefit ana-
lyses should account for the fact that intense or wide torna-
does are much more common than is implied by the official
tornado record.

Our finding that tornado intensity and width are more seri-
ously underestimated than track length (Fig. 3; Table 1) sug-
gests that greater weight should be given to the latter in
certain applications. For example, since long-track tornado re-
ports are less biased than high-damage-rating reports, spatial
analyses of the former will better represent the true tornado
climatology. Given the correlation between tornado intensity
and track length (Brooks 2004), it is possible that long-track
tornado reports better represent intense tornadoes than do
high-damage-rating reports (though it is not clear how to
test this hypothesis). The more modest bias in damage path-
length also further motivates the use of cumulative damage
pathlength in identifying tornado outbreaks or characterizing
tornado risk (e.g., Edwards et al. 2004; Broyles and Crosbie
2004; Clark et al. 2012; Fuhrmann et al. 2014; Coleman and
Dixon 2014).

It is noteworthy that the model-estimated frequencies of
(E)F0 tornadoes are sharply maximized over the Great Plains,
whereas (E)F21 tornadoes are maximized over the Southeast
(cf. Figs. 6b,d). One likely meteorological contribution to this
pattern is the well-known higher frequency of weak, nonme-
socyclonic tornadoes over the Great Plains than over the
Southeast (e.g., Lee and Wilhelmson 1997). It is also likely,
however, that the longer viewing distances and higher density
of storm chasers in the Great Plains causes the reporting
biases within low-population areas there to be smaller than in

FIG. 11. Linear trend in annual 100-km (a)N and (b) k for 1977–2016. Hatching indicates statistically significant trends.
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similarly populated areas of the Southeast. The Bayesian
model does not account for these variables and so would ove-
rcompensate for reporting bias in the Great Plains if these
effects are indeed occurring. Similarly, the sensitivity of report-
ing bias to population density is likely modulated by Doppler
radar coverage, and so the model likely overestimates the
frequency of weak tornadoes in areas with dense WSR-88D
coverage but sparse population. Such considerations of omitted
variable bias motivate the inclusion of additional parameters in
the tornado reporting rate model (a nontrivial task; P19) or
application of the model to individual geographical regions
(although the reduced sample sizes would increase uncertainty
in the model parameters).

When interpreting trends in the 5-yr k (section 4; Fig. 9), it
is important to remember that our model makes no accommo-
dation for changes in tornado counts arising from changes in
damage assessment practices. The model is designed to cor-
rect only for the increases of unreported tornado rates and of
the biases in estimated tornado attributes arising from sparse
population and damage indicators. There have been many of-
ficial and unofficial changes in tornado damage assessment
that are expected to have introduced temporal variability
(likely including both gradual trends and abrupt shifts) into
the tornado record. For example, it is safe to assume that the
rapid increases in 200-yd1 k beginning in the mid-1990s and
mid-2000s (Fig. 9g) are due at least in part to the switch to re-
porting maximum instead of average damage path width in
1995 and the implementation of the EF scale in 2007, respec-
tively (Edwards at al. 2021). It is unclear how well we can dis-
tinguish such secular variability from true changes (both short
and long term) in tornado attributes. Fortunately, the 5-yr k
for ALL tornadoes are not sensitive to changes in damage
survey practices, nor to other nonmeteorological effects such
as the expansion of Doppler radar coverage, so long as TRR
approaches unity in the most populous areas of our central
U.S. domain throughout the analysis period.

The linear trend in the 5-yr k for ALL tornadoes is small
(19 yr21) and statistically insignificant (Fig. 9a), which suggests
that long-term climate change has not substantially affected
the domainwide tornado frequency during the 1975–2018
analysis period. This result confirms the hypothesis that most
or all of the long-term trend in reported U.S. tornado counts is
due to nonmeteorological factors. That hypothesis, which is
based on the much larger increase in reported (E)F0 than
(E)F11 tornadoes over the tornado record, underlies the use
of linear detrending to correct for secular changes in tornado
frequency (e.g., Verbout et al. 2006). The Bayesian modeling
approach is a far more powerful way to characterize temporal
variability in true tornado frequency that does not assume
long-term stationarity thereof nor linearity of any secular
trend. Our model estimates of TRR for ALL tornadoes sug-
gest the linear secular trend assumption is approximately valid
until the last decade of the 1975–2018 analysis period. Much
more nonlinear evolution of TRR is estimated for certain tor-
nado categories, however (e.g., Fig. 9g).

The generally nonincreasing TRR near the end of the analysis
period for the various tornado categories (Fig. 9) suggests our
ability to detect and accurately characterize tornadoes may not

improve substantially without major observational innovations
(e.g., unpiloted aerial systems; McFarquhar et al. 2020; Wagner
et al. 2019, 2021). We therefore expect that statistical techniques
to quantify and correct reporting biases will be necessary for the
foreseeable future.

Given the large regional trends in tornado frequency identi-
fied by previous work (e.g., Gensini and Brooks 2018) and
further examined herein (Fig. 11), it is useful to consider the
degree to which changes in regional tornado frequency may
degrade the Bayesian model estimates. While the model does
not explicitly account for regional or domainwide changes in
k over the analysis period, the expected reported tornado
counts should be well approximated by the product k 3 TRR
[i.e., Eq. (1) should be valid] even if a large trend exists in k.
This idea is supported by our finding that explicitly accounting
for the large linear trend in domainwide TRR over 1975–2018
(Fig. 9a) via the b2 term in Eq. (5) does not substantially improve
the model (section 4b), which suggests that failure to account for
large linear trends in tornado frequency should not substantially
degrade the model. The potential effects of highly nonlinear
changes in regional tornado frequency during the analysis period
are less clear, though we suspect the resulting bias in TRR would
be small since errors arising in regions with nonlinear k changes
would be substantially offset by errors in regions with approxi-
mately opposite k changes, assuming that changes in tornado fre-
quency can be primarily characterized as spatial shifts. Nonlinear
k changes may be more impactful in our 5-yr analyses since the
degree of the aforementioned error offsetting likely decreases for
shorter analysis periods. The potential Bayesian model errors
arising from nonlinear regional changes in k could be rigorously
investigated using artificially constructed or modified tornado
report datasets.

6. Conclusions

Tornado underreporting and underrating have severely
contaminated the official U.S. tornado database. Bayesian
hierarchical modeling provides a powerful framework for
mitigating the impacts of these biases and thereby facilitating
studies that depend upon accurate estimates of U.S. tornado fre-
quency. P19 used a Bayesian hierarchical model to estimate the
reporting rate and expected frequency of tornadoes over the cen-
tral United States during 1975–2016. A novelty of the model was
that it mitigates a solution nonuniqueness problem that likely
degraded estimates of tornado frequency and reporting rate in
previous studies. The present study eliminates some ad hoc ele-
ments of the P19 Bayesian model. Rather than splitting the anal-
ysis domain into subregions within which the true tornado
frequency is assumed to be constant, a restricted spatial regression
model is used to account for spatial autocorrelations in tornado
frequency. In addition, two parameters of the tornado reporting
rate model that were prescribed in P19 are now predicted along
with the remaining Bayesian model parameters. Using the
improved Bayesian model, the present study examines how
tornado reporting rate and bias-corrected tornado frequency
vary with damage rating, pathlength, path width, and over the
1975–2018 analysis period.
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The Bayesian model analysis presented herein indicates
that for every (E)F21 tornado report within the central
United States over the 1975–2018 analysis period, 1.9 (90%
CI: 1.4–3.0) additional tornadoes with (E)F21 damage poten-
tial occurred but were either unreported or assigned an (E)F0
or (E)F1 rating. In light of recent modeling and observational
work (Dahl et al. 2017; Wurman et al. 2021), the tornado in-
tensity underestimation problem is likely even more severe
than our analysis suggests. Our model similarly estimates that
tornadoes exceeding 200-yd diameter have been under-
counted by a factor of 2.9 (90% CI: 2.2–4.0). Reported dam-
age pathlength appears to be less biased than damage rating
and damage path width; this advantage should be considered
when designing criteria for subsetting the tornado database.
The Bayesian model estimates are corroborated by simple
analysis of the tornado record; we recommend that future
Bayesian model studies of tornado climatology use similar
plausibility checks to ensure the veracity of their results.

One particularly valuable application of the Bayesian
model is to produce time series of expected actual tornado
counts. Our analysis suggests that all-tornado frequency has
not changed substantially over the analysis period. For certain
tornado categories [e.g., (E)F21 tornadoes], the time series
exhibit large, statistically significant trends over the analysis
period. Since the Bayesian model does not account for
changes in damage survey practices, however, we cannot iso-
late meteorological trends in the expected counts from trends
arising from changes in reported attribute biases. Given that
these residual secular trends over the analysis period are diffi-
cult to estimate, detecting true trends in tornado intensity,
size, or track length may prove difficult unless they become
very large.

The Bayesian hierarchical modeling framework adopted
herein can be applied to a number of other problems. Direct
extensions of the present work include examining how tor-
nado reporting bias varies diurnally and seasonally; revisiting
previous findings that could have been substantially affected
by reporting bias, as we did with the Gensini and Brooks
(2018) analysis of changes in U.S. tornado frequency (we
found that the eastward shift of tornado frequency is likely
more pronounced than was originally reported); and estimat-
ing reporting bias in the severe hail and severe wind data-
bases. Ideally, improvements to severe weather climatologies
accruing from this and other approaches to correcting report-
ing bias (e.g., Wurman et al. 2021) will benefit future studies
of climate–tornado linkages, cost–benefit analyses of tornado
damage mitigation strategies, and evaluations of severe
weather prediction tools and operational products. Given the
recent flattening of tornado reporting rates, there is likely to
be a continuing need for reporting bias correction techniques.
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APPENDIX A

Selection of Gaussian Kernel Width for Smoothing l

A completely spatially random process is modeled by the
Poisson distribution:

P(k) 5 Ek exp(2E)=k!, (A1)

where P is the probability of k events occurring within a pre-
scribed region given an expected number of events E. We use
Eq. (A1) to calculate the minimum filtering scale required to
substantially mitigate sampling errors in spatial plots of the
mean k posteriors from our Bayesian model. First, we determine
the smallest E, Emin, for which P(0.8E , k , 1.2E) . 0.95,
that is, for which random sampling errors are , 20% at least
95% of the time. This is Emin 5 96. We round Emin to 100,
both for simplicity and since, for E 5 100, k has the additional
desirable property of lying within 10% of E more than 70% of
the time. We judge these sampling errors to be acceptably small
for our application. We then divide Emin by the domain-mean
reported tornado count 〈N〉 to obtain the average area A over
which E 5 Emin (i.e., over which there are, on average, 100
reported tornadoes). Last, we compute the diameter d of a
circle of area A. Thus, if we were to use a circular filtering
kernel that evenly weights all grid cells within a radius of
d/2, we could be confident that sampling errors due to
complete spatial randomness would be strongly damped in
the analysis.

It is not immediately clear, however, what the corresponding
width (2 times the standard deviation) of the Gaussian filtering
kernel should be. We therefore used the simple circular filter
to smooth spatial plots of N and then visually compared the
results with Gaussian-filtered N obtained using various kernel
widths. We thereby determined that, for each of the tornado
categories examined in this study, a Gaussian kernel width
W 5 0.6d produces analyses that are very similar to those
from the simple filter except, of course, less noisy (our primary
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motivation for using a Gaussian filter). Thus, for each tornado
category, we calculate W as

W 5 0:6d 5 0:6 3 2(A=p)1=2 ≈ 0:68(Emin= N〈 〉)1=2

≈ 6:8= N〈 〉1=2: (A2)

Since tornado occurrences are more clustered than if they
were generated by a truly spatially random process (hence
our use of the negative binomial distribution in the Bayes-
ian model), W serves as a lower estimate of the optimal fil-
ter width for reducing sampling errors below a prescribed
tolerance. We propose that this approach to selecting an
appropriate Gaussian filter kernel width is applicable to any
problem involving 2D data that are governed by a spatially
quasi-random process.

APPENDIX B

RSR Model Implementation

Implementation of the RSR model required an adjacency
matrix for our n 3 n correlated random errors grid (which
is coarser than our 10-km analysis grid, i.e., n , 180; we
give more on this later), An3n, and a regressor matrix,
which for our application is a vector of PD, Xn31. We use
an eight-connected neighborhood for A. We then compute
the projection P onto the orthogonal component of X:

Pn3n 5 I 2 X(XTX)21XT,

where I is the n 3 n identity matrix. The Moran operator V for
X with respect to the underlying graph (represented by A) is

FIG. B1. Mean posterior v obtained using (a) 90-km RSR model and q5 20, (b) 90-km RSR model and q5 40,
(c) 90-km RSRmodel and q5 80, and (d) 30-km RSR model and q5 40.
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Xn3n 5 PAP:

We then compute the first q eigenvectors of V to form Mn3q,
which thus comprises mutually distinct clustering patterns in N
that are noncollinear with PD. From visual inspection of ev for
different q (Fig. B1), we judged that q 5 40 captures much of
the spatial heterogeneity in k without excessively fitting finer-
scale patterns that are less likely to represent the true long-
term climatology.

The correlated random errors variable is given by

v 5 MaRSR,

where aRSR controls the variance in v between neighboring grid
cells and is assigned a multivariate normal (MvNormal) prior:

aRSR ∼ MvNormal(m 5 0, t 5 ts 3 at):

The smoothing parameter ts is assigned a gamma prior:

ts ∼ gamma(a 5 0:1,b 5 0:1),

and the precision matrix at is given by

at,q3q 5 MTQM,

Qn3n 5 diag(A1) 2 A,

where the “diag” operator creates a diagonal matrix from
the input vector and 1 is a conformable vector of 1s.

Our initial RSR model implementation on the 180 3 180
analysis grid was prohibitively computationally expensive.
We therefore computed the correlated random errors terms
on a coarser, 20 3 20, grid collocated with the analysis grid.
Thus, n 5 20 in the RSR model description above. To ob-
tain v within each 10-km analysis grid cell, we simply assign
it the v of the corresponding (parent) 90-km RSR model
grid cell. Using a 60 3 60 grid instead (i.e., 30-km RSR
model grid cells) did not increase R2 for model predictions
of ALL (Fig. B1) but roughly quadrupled the run time. The

implied negligible impact of smoothing the 10-km v is not
surprising given that we do not attempt to model fine-scale
structure in v (Fig. B1b).

APPENDIX C

Impact on Early Period Analyses of Using 1990
Population Density Data

To qualitatively assess the errors that may arise early in the
analysis period due to the unavailability of high-resolution
census data prior to 1990, we repeated the (1975–79, … ,
1988–92) 5-yr analyses for ALL tornadoes and (E)F0 torna-
does using the PD calculated from the 2010 census (Fig. C1).
In the original experiments the PD were valid 13 and 0 years
into the future for the 1975–79 and 1988–92 analysis periods,
respectively, whereas in the new experiments the PD are valid
35 and 22 years into the future, respectively. Consistent with
the general increase of population density during the analysis
periods and the general increase of TRR with PD, using the
2010 PD inflates the TRR estimates and correspondingly de-
flates the k estimates. The changes in the mean posterior TRR
and k arising from the increased PD errors are substantial for
both ALL tornadoes (Fig. C1a) and, especially, (E)F0 torna-
does (Fig. C1b). However, given that the largest temporal error
in PD in the original experiments is considerably less than the
smallest temporal error in these new experiments (13 vs 22 yr),
the corresponding TRR and k errors in the original experi-
ments, even at the earliest analysis periods, should be smaller
than most of the differences between the original and 2010-PD
experiments. Errors arising from the use of the 2010 PD for
the (2009–13, … , 2014–18) analyses should be even smaller.
We conclude that our use of only 1990, 2000, and 2010 PD
data did not substantially degrade our analyses.
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